* Contributo a cura di SB Italia
Migliorare le relazioni con i clienti e anticiparne le propensioni d’acquisto, velocizzare al massimo i tempi di consegna delle merci, individuare sacche di inefficienza in tempo reale per ridurre i costi. Queste sono alcune fra le esigenze più stringenti per la maggioranza delle aziende, oggi impegnate nei processi di
trasformazione digitale, con l’obiettivo di sviluppare il proprio business, ma anche rendere più flessibili e, in ultima analisi, meno costosi i processi-chiave.
Secondo lo studio di
SB Italia, il
cognitive computing può fornire risposte concrete alle più importanti necessità odierne delle aziende. Le tecnologie di cui si compone sono in grado di elaborare enormi quantità di informazioni, imparare in modo autonomo, interagire nel linguaggio dell’uomo e riprodurne i modelli di pensiero. In questo modo, un’impresa commerciale può avvalersi di un sistema cognitivo per standardizzare le modalità di comportamento della clientela, elaborare proposte e offerte personalizzate sulla base dei gusti dei consumatori, simulare l’andamento delle vendite per ottimizzare i flussi di magazzino, fare di un customer care a misura di singolo utente una leva commerciale.
Allo stesso modo, un’azienda di produzione può fare
manutenzione predittiva sui propri impianti, iniettare intelligenza nella supply chain prevenendo le inefficienze, concretizzare i propri desideri di time-to-market potendo prendere decisioni basate su maggiori elementi di certezza.E questi sono solo alcuni degli esempi di come il cognitive computing, oggi, possa essere la chiave per risolvere problemi di business concreti e comuni alla maggior parte delle realtà impegnate a rimanere e crescere nel proprio mercato di riferimento.
CognitIve Computing: uno scenario in rapida evoluzione
Tramite l’impiego di tecnologie di
machine learning e linguaggio naturale, l’obiettivo di questa evoluzione della business intelligence è quello di dare un senso più compiuto alla massa di informazioni che le aziende si trovano a dover trattare e di facilitare i processi decisionali.
In pratica, si tratta di
creare conoscenza a partire da una grande quantità di dati oggi un po' più facilmente elaborabili grazie alle tecnologie di gestione Big Data. Le aziende, infatti, stanno sempre più aggregando montagne di informazioni interne ed esterne, delle quali l’essere umano non è più in grado di fare un'efficace sintesi.
Il cognitive computing si occupa di
contestualizzare le informazioni e fornire degli “insight” anche estremamente dettagliati. Per riuscirci, come abbiamo già notato, si fa appello alle tecnologie di machine learning, all'analisi dei grafi e all'elaborazione del linguaggio naturale. In realtà, gli algoritmi utilizzati non sono di per sé nuovi, ma traggono beneficio dalla crescita esponenziale della potenza di calcolo oggi disponibile. Con l’informatica di tipo cognitivo, si esce dalla tipica modalità binaria del “sì o no”: ciò che viene predetto non è un risultato certo, ma un'indicazione basata su punteggi e correlazioni.
Le prospettive applicative
Uno degli ambiti a potenziale più elevato è quello della gestione e del rafforzamento del
rapporto con la clientela. Qui le tecnologie cognitive hanno già trovato applicazione pratica per esempio nel campo del cosiddetto “
churn management”, ovvero il tasso di potenziale abbandono di un brand (di solito per passare a un concorrente), che può essere controllato e ridotto, rilevando segnali di debolezza a partire dai dati di un
Crm o dalle interazioni con i call center. In effetti, negli attuali ambienti di Business Intelligence e anche in quelli già strutturati per gestire i Big Data, è divenuta consuetudine accumulare ampie quantità di informazioni sui clienti, che però raramente si traducono in una conoscenza in grado di produrre una rapida reazione.
Il cognitive computing consente di automatizzare alcune di queste azioni, grazie alla capacità di imparare dai dati, elaborarli e restituire indicazioni e raccomandazioni. Ricadute immediatamente percepibili si possono avere, per esempio, nella riduzione del tempo e delle risorse necessarie per risolvere problematiche specifiche dei clienti. In prospettiva, lungo questa via, è possibile convertire le strutture di
customer care in veri e propri centri di profitto, facendo leva sull'efficienza del servizio per attivare azioni commerciali anche durante l'interazione.I consumatori, oggi, vogliono risposte rapide alle loro richieste e un’esperienza personalizzata sulle proprie attitudini.
Le soluzioni cognitive consentono di
individuare rapidamente le preferenze di spesa degli individui, analizzando in modo autonomo dati provenienti, per esempio, dagli andamenti demografici, dallo storico degli acquisti, dalle wish list raccolte online e anche dai social media. Il rapporto con il cliente può divenire così più diretto e coinvolgente, grazie alla possibilità di usare il linguaggio naturale nelle varie fasi di ingaggio, proporre idee ritagliate sui gusti reali e addirittura fornire consigli di spesa.
Un altro ambito di concreta applicazione open cognitive computing riguarda l'evoluzione della
supply chain. La trasformazione digitale in corso sta già influenzando un settore nel quale un maggior livello di automazione, velocità ed efficienza può creare fin d'ora un significativo vantaggio competitivo. Basti pensare a una grande realtà come Amazon, che ha potuto fornire servizi di consegna anche molto rapida alla propria clientela proprio perché ha automatizzato e reso intelligente il proprio sistema logistico.Ma non occorre essere un gigante per poter sfruttare già oggi ciò che le tecnologie cognitive e l'intelligenza artificiale possono mettere a disposizione.
Ci sono già esempi concreti di realtà che, per esempio, hanno migliorato
la gestione del magazzino oppure i percorsi di distribuzione della merce, utilizzando in modo intelligente i dati a loro disposizione. Per i retailer, l’intelligenza artificiale apre un nuovo mondo di possibilità, consentendo di modellizzare differenti scenari distributivi allo scopo di minimizzare i costi di consegna dei prodotti e creare, allo stesso tempo, un’esperienza uniforme e appagante per i clienti.
La possibilità di prevedere e programmare nei minimi dettagli la logistica, può consentire di trasformare i negozi in piccoli ed efficienti magazzini, comprimendo qualche anello della catena distributiva e preservando i margini.
La manutenzione predittiva è un altro possibile terreno di sviluppo, dove un sistema cognitivo può essere in grado di suggerire le aree di potenziale miglioramento o quelle nelle quali esistono maggiori probabilità che si verifichino anomalie.